Growth and development temperature influences level of tolerance to high light stress.

نویسندگان

  • K L Steffen
  • J P Palta
چکیده

The influence of growth and development temperature on the relative tolerance of photosynthetic tissue to high light stress at chilling temperatures was investigated. Two tuber-bearing potato species, Solanum tuberosum L. cv Red Pontiac and Solanum commersonii were grown for 4 weeks, at either 12 or 24 degrees C with 12 hours of about 375 micromoles per second per square meter of photosynthetically active radiation. Paired leaf discs were cut from directly across the midvein of leaflets of comparable developmental stage and light environment from each species at each growth temperature treatment. One disc of each pair was exposed to 1 degrees C and about 1000 micromoles per second per square meter photosynthetically active radiation for 4 hours, and the other disc was held at 1 degrees C in total darkness for the same duration. Photosynthetic tissue of S. tuberosum, developed at 12 degrees C, was much more tolerant to high light and low temperature stress than tissue developed under 24 degrees C conditions. Following the high light treatment, 24 degrees C-grown S. tuberosum tissue demonstrated light-limited and light-saturated rates that were approximately 50% of their paired dark controls. In contrast, the 12 degrees C-grown tissue from S. tuberosum that was subjected to the light stress showed only a 18 and 6% reduction in light-limited and light-saturated rates of photosynthetic oxygen evolution, respectively. Tissue from 24 degrees C-grown S. commersonii was much less sensitive to the light stress than was tissue from S. tuberosum grown under the same conditions. The results presented here demonstrate that: (a) acclimation of S. tuberosum to lower temperature growth conditions with a constant light environment, results in the increased capacity of photosynthetic tissue to tolerate high light stress at chilling temperature and (b) following growth and development at relatively high temperatures S. commersonii, a frost- and heat-tolerant wild species, has a much greater tolerance to the high light stress at chilling temperature than does S. tuberosum cv Red Pontiac, a frost-sensitive cultivated species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of chilling and high light stress on phenolic metabolism and antioxidant activity of Aloe vera L. plants

High light (HL) can limit plant photosynthetic activity, growth and productivity. The HL effect was more pronounced in plants grown at low temperature. In order to determine the effects of chilling stress (4 0C) and light intensities (450 and 850 µmol m-2 s-1) on antioxidant defense system and  phenolic metabolism of Aloe vera L., an experiment was  conducted in a randomized complete block desi...

متن کامل

Selecting High Zinc-efficient and Assessment of Zinc Stress Tolerance of the Wheat Durum Genotypes

At percent, Zn stress tolerance using novel genetic resources is an important mitigation strategy for plant breeding. In this study, thirty-five durum wheat genotypes with different growth habits were evaluated under normal (non-stress) and Zn deficient stress during the 2014-15 cropping season. A total of ten Zn stress tolerance indices including stress tolerance index (STI), relative zinc-def...

متن کامل

The responses of L-gulonolactone oxidase and HKT2;1 genes in Aeluropus littoralis’ shoots under high concentration of sodium chloride

Salinity is one of the most important abiotic stresses that limit crop growth and production. Salt stress influences plants in two ways: by affecting ion toxicity and increasing osmotic stress. Ion homeostasis, the excretion of Na+ and using antioxidant systems are the major strategies of salt tolerance in plants. Na+ and K+ transporters with enzymes that are involved in detoxification of react...

متن کامل

Swim stress decrease the development of morphine tolerance apart from nitric oxide inhibition

Stress and chronic pain have been shown to prevent the development of tolerance to morphine analgesia, which appears to be related to neuroendocrine activity and alternation in neurochemicals. Also the involvement of nitric oxide (NO) has been implicated in tolerance to morphine analgesia. In our pervious study, we showed that co-administration of swim stress (ss) with chronic morphine, prevent...

متن کامل

Swim stress decrease the development of morphine tolerance apart from nitric oxide inhibition

Stress and chronic pain have been shown to prevent the development of tolerance to morphine analgesia, which appears to be related to neuroendocrine activity and alternation in neurochemicals. Also the involvement of nitric oxide (NO) has been implicated in tolerance to morphine analgesia. In our pervious study, we showed that co-administration of swim stress (ss) with chronic morphine, prevent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 91 4  شماره 

صفحات  -

تاریخ انتشار 1989